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ABSTRACT

The system of a fully ionized gas combined to a half-
space by a perfectly reflecting boundary is discussed. It is
shown how the effect of pair correlations can rigorously be

taken into account in both the equilibrium and non-equilibrium

theory.



I. INTRODUCTION

In the rapid development of plasma kinetic theory in recent
years, the simplifying assumption of an "infinite" system, i.e., one
for which the effect of any boundaries can be ignored, has been almost
universally applied. However, in a sense, a plasma without boundaries
is an uninteresting system, since it is not subject to experimental
control (how does one "apply" a field to such a system?).

The present work consists of an analysis of the simplest
system with boundaries: a semi-infinite system with one perfectly ref-
lecting boundary. Such a system was treated in the '"Vlasov approximation"
in the second half of the famous paper by Landaul. We will show that
some important corrections are obtained by the inclusion of pair corre-
lations, particularly when the frequency of the applied field is near
the plasma frequency.

In section II. and III, we discuss the thermal equilibrium
plasma. We find that (a) If a static field is applied at tﬁe boundary, a
sheath of thickness ~ Debye length is created, in which the charge den-
sity is appreciably different from zero. The results for this case agree
quantitatively with the recent work of Pinney2 for slab geometry, in the
limit of a thick slab. (b) Even in the absence of an applied field, there
is a correction to the Debye-Hiickel pair correlation due to the physical
presence of the boundary; this dies out expomentially if either particle
is more than a Debye length from the wall:. This leads to (c¢) a boundary

layer of thickness " Debye length in which the density of each species
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varies by an amount -~ plasma parameter from its average value, even

in the absence of an applied field. Pinney2 also found such a boundary
layer, but our results differ from his in both the sign and magnitude

of the density corrections. Inasmuch as (1) it seems intuitively obvious
that the densities near the wall should be less than those in the in-
terior, in contradiction to Pinney; and (2) our method is much simpler
than Pinney's for both semi-infinite and slab geometries, we believe our
results are correct, and that there is an error somewhere in the "exten~—
sive computation' omitted from Pinney's paper.

In section IV, we consider the nonequilibrium theory on the
basis of the first two equations of the BBGKY hierarchy, linearized about
equilibrium, and with the triple correlation neglected., The main correc-—
tion to the Vlasov treatment of Landau1 occurs when the frequency of the
applied field is near the plasma frequency (specifically Iw - wpl N
where v is the effective "collision frequency'"). In this case, the limi-
ting value of the field amplitude at large distances from the boundary is
given by E(x) = E(o)/stot where €rot is the "dielectric constant' of
the system including the effect of correlations. As w > wp (and the "'col-
lisionless' dielectric constant approaches zero), the effect of correla-
tions is dominant. In terms of impedance, it turns out that the impedance
at the plasma frequency is nearly pure resistance, and inversely propor-
tional to the plasma parameter. Since this limiting value is large, it
should be sensitive to the precise treatment of the correlation effects.
Two additional points should be noted: (1) The correlational correction

to the dielectric constant is zero for. the usual model of an electron

gas in a positive background, and is due to electron-ion interactions.
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(2) In addition to the usual effects due to emission and absorption
of plasma waves, effects are also found due to "surface plasma waves"
propagating at a frequency n wp//f . As usual, however, the wave
effects are "non-dominant" for a stable plasma (i.e., are smaller than
bare particle interaction effects by a large logarithm).

Section V discusses the results, and the possibilities of

treating more realistic bounded systems.

II. '"COLLISIONLESS" EQUILIBRIUM PLASMA IN A HALF-SPACE

We consider an overall neutral, fully jonized gas of an arbit-
rary number of species, with type o characterized by charge es »
mass m_ and mean density n_ . Where convénient, we will require that
all components are singly ionized, i.e., e, =~ e, e =e, 0> 1.
The system is assumed to be confined to the half-space x > 0 by a per-
fectly reflecting boundary on which a static (i.e., time indépendent)
electric field

E(x=0) = E0

mean interaction ener
(~ A7)

is applied. To zeroth order in the plasma parameter mean thermal energy

the system is described by the Vlasov and Poisson equations. We further
assume that sufficient time has elapsed for the velocity distribution to
be Maxwellian (of course, correlations,neglected in the Vlasov equation,
are required to drive the system to equilibrium, but we assume that the
Vlasov equation adequately describes the density distribution after the

equilibrium has been achieved). Thus we take3



3
Bm0 /2 mevz
Fl > fo(x,x,c) = n(x,0) (5;—> exp | - — .

The equations governing the system are then given by

do(x,0) Be n(x,0) E(x) (1)

dx

(equilibrium Vlasov equation), and

%§-= 4y g e, n(x,0) (2)

(Poisson's equation).

Equations (1) and (2) are a coupled pair of non-linear equations for

E(x) , n(x,0). However, we will see that for this simple model (unlike

the non-equilibrium theory) they can be solved exactly.

The form of equation (1) suggests the substitution

-Be _¢(x)
© (3)

n(x,0) = c(o) e

which gives, on substitution into (1),

206 g . )

Equation (4) shows that ¢(x) 1is independent of o , except for a

constant which could be absorbed into c(o) (the requirement that ¢(x)

be independent of ¢ removes the ambiguity from (3) ). Eq. (4) also



shows that ¢(x) 1is in the nature of a potential for E(x). We also

require that

lim ¢(&x) = 1lim E(x) =0 (5)

X > « X > @

so0 that

c(o) = n_ (6)

The condition that the mean charge density be zero is then given by
Z noe. = 0 (7)

Substitution of (3), (4), (6) into the Poisoon's equation (2) gives

2 -Be _¢(x)
%E - dex® 4T ) e n_e ¢ (8)
X dX2 5 g o

It is not known whether it is possible to solve (8) for general e s
nO subject to (7); however for the singly ionized case, it takes a

particularly simple form. In this case, (8) becomes

d2¢ Bed (x) ~-Bed (x)
—5 = 4re n, e - Z n_e 9
dx oz 2
But, according to (7)
2 n, = n; =1 (10)
559 O o)



and defining

v(x) = Bedp(x) (11)
we find
a%y 2
——321 = «° sinh y (12)
dx
where
= 8anoe2 (13)

This equation has also been obtained by Pinney2 who solved it for the
more realistic boundary conditions of the plasma capacitor. We will
briefly sketch its solution for the semi-infinite problem. Inasmuch
as the independent variable does not appear explicitly, the first in~
tegral is immediate, and is given by

2

(%%) = 2K2 cosh ¢ + const. (14)

The constant is determined by the requirement that

lim $(x) = 1lim dv 0 (15)

X > X > oo dX

whence

—g—i—=—/§l</coshlll—1. (16)
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where the choice of the minus sign on the square root is dictated by

the requirement that Y  should not grow in space. Equation (16) may

also be integrated by standard means, and one finds

k(x + xo)]

Y(x) = 2 fn coth [ 5

17

where X is an undetermined constant. The constant may be determined

by the requirement that

1 dy
EQ) = - (1) & - E
Be dx % =0 o
whence
_ 1 -1/ 2
X, = sinh (BeE )
o
and
2K E
E(x) = Eé-csch k(x + xo) = o
cosh kx + V1 + o sinh «kx
where
2
- (BEEo) _ Sfield
- - ]
2k 4 €h
and
E2
e = _9
- ’
field 8
€ =n 0 s

(18)

(19)

(20)

(21)

(22)

(23)



are the energy densities associated with the applied field and the
thermal motion respectively. The densities of the various species are

given by (3), (6); in particular the charge density is given by

o (x)

— lhe n_ csch[K(X + xo)] COth[K(X + xo)]

KEO [Vl + o cosh kx + sinh KX]

h [Vl + o sinh xx + cosh KX]2

2E_ e—Kx[% +_<Vl + o = l) o —ZKX}

- vi+ o+ 1 (24)
2
zm[f——l e 1][1 (AEe-y, 2]
Vi 4+ a4+ 1

Thus both the field and the charge density die out exponentially for

kx >> 1 , independent of the strength of the field. One difference
between the strong (a >> 1) and weak (a << 1) field cases should

be noted however. In the weak field case, the charge density 4 the boun-
dary is proportional to the field, whereas for strong fields, it goes

as Ei . In fact, one sees from (24) that

KEOVl + o ’
p(0) = = —2p (25)

so that [eq.(21)]

<E
o

PO = - 77 5 Cgie1d4 <5 e (26)



and

plo) v = —5° = ’E‘"‘) > ®field 77 Fth @7
These relations could also have been derived from the pressure con-
servation law
B _ ]
g n(x,0)0 - & = const, = 2 n (28)

which can easily be obtained directly from (1), (2). For the strong
field case, the ion density near the plate is nearly zero, and the
electron density may greatly exceed its mean value. Not much physical
significance may be attached to the strong field results however, since,
for such strong fields, the thermal equilibrium cannot be established,
and we will be confronted with electron runaway.

In the nonequilibrium theory of Section IV, we will linearize
about a field-free equilibrium (EO = 0) . In this case, the results
of this section show that, in the absence of correlations, the one-
particle equilibrium distribution is a Maxwellian with constant density.
However, we will show in the next section that correlations give rise
to a different sort of boundary layer, similar to that found in an ordinary
gas, in which the density differs from its mean value, even in the absence

of an applied field.

III. SHEATH FORMATION IN EQUILIBRIUM, FIELD-FREE PLASMA

In the absence of an applied field, the previous section shows

that there is no field anywhere in the equilibrium plasma, and that the
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density of each species is uniform when correlations are neglected.

In the present section we will show how non-negligible pair correla-
tions affect this picture.
We make the usual assumptions appropriate to a stable, high-

temperature plasma, namely that

pairs

and that g 1is first order and h is higher order in the small para-
meter
3
K 2
a v Bel K
which characterizes the system (x is defined by (13) ) . We define

thermal equilibrium by

3

BmO 2
Fl > fo = n(x,0) o

/2 [ Bmov ]
exp | - —

and

g > gO = fo(xs,‘{sc) fo(X‘,V‘,O') GO(X,U:X' ,O"Sl-si)

where R, , R, are the components of the particle position vectors
n N :

in the plane of the boundary. Then to first order in the plasma para-

meter, the first two equations in the BBGKY hierarchy become
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%}Z n(x,0) = - Beon(x,o) z'eo, ‘{ dx' { d%[%{-( 1 . 2) X
o Y(x-x")% + p
X n(x',o'{][l + Go(x,c,x',c',p) J : (29)
v

]
R GO(X,G,X',G',R_,_ - Ri) =
" 4" n
3 1 2
- Beoec, 5§:(—————-——> —Be0 z e f dx"''n(x'",0"") f d Rl'
VR - R oy ;
"] n
8 1 1 Ty 1 1 Tt
SRlTT Go(x 50" T,x',0" Ry~ Ry) (30)
N |R - R"| o "
Uyl Y]
It is convenient to introduce
Go(x,c,x',o', R, - Ry) = - Beoec, g%(x,x',]&l - Ry) 31
4"} aV)

av) v

Substitution of (31) into (30) gives
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3 /7 ] 1
- (x,x' ,Rl—Ri) = — —-*-—-——)
ER(X/O Nl 9R IR _ R,l

4% v

N N,
(32)
- 2 eczy" J ax''n(x"",qc'") j dzR;—l _g_ﬁ, (..__._]:.____. ,O(X”’X"R_"."Ri) .
o't o n [R—R"[ & VY

o

It is now apparent why no ¢ arguments were included in ?o » the right
side of (32) is independent of ¢ , and thus éo must be -

' . In deriving (30), we

By symmetry g%) must also be independent of o
have used the fact that according to (29), %n(x,0)/8x 4is proportional

to G0 and thus to the plasma parameter; therefore terms like Go an(x,0) /3x
-are second order in the plasma parameter, and have been neglected. We have
also used the fact that the charge density vanishes as the plasma para-

meter goes to zero (in the absence of an applied field) as seen from the
preceding section, and thus may be taken as of order the plasma parameter

(or smaller). By a similar argument, we may replace n(x'',o'')

by n .y on the right of (30), n(x,0) by n, on the right of (29), and
n(x',0') by n in the second term (but not the first) on the right of
(29). These arguments would be invalid if they led to secular growth of
n(x,6) in =x , however we will find that this is not the case. Indeed

we will find that (29), (30) lead to a correction to the density which is

both small and exponentially damped in space.

Taking the divergence of (32), one finds

Y Y

2 .
[ (g—ﬁ) - Kz] Gy = = 4ns(R = R") ) (33)
R _
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Equation (33), is, of course, a familiar one, with a familiar solution;

the Debye-Hiickel correlation. However, Debye-Hiickel is not a solution

of (32), because the integral over x'' is from 0 to not (- »,o) .

To solve these equations, we employ a two dimensional Fourier transform

with respect to Ry - R} ; defining

o a
_is-p
2 "y
I x,x",s) = f dpe " G (x:x"50) (34)
o o
one finds
]
aro(x,x ’2) = — 97 n ( _ 1)—S|X’X'l
- = sg X-X
2 —s}x—x"l
+ g—-[ dx'' sgn(x-x'") e Fo(x",x's) (35)
V]
0
and
2
3 2 2 ' : '
— - (k™ + 89) Fo(x,x »8) = — 4ud(x-x") (36)
9x N
where we have used
KX x|
o -8 |X
J d2 0 e - 2me (37)

sz + X2 °

The solution of (36) which vanishes as x,x' + «» clearly has the form

5 e—¢K2+szlx—x'] ;¢K2+32(x+x')
PO(sz'ss) = L + C e

e Kz + 52

(38)
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The constant C is determined by the requirement that (38) also satisfies
(35). On substitution of (38) into (35), one finds after straightforward

evaluation of some integrals, that (38) is a solution of (35) if and only if

c = 2T (VKZ + s2 - s)

(39)
V£§f+ s2 /ﬁz + 32 + s
Thus, from (38), (39), (31), (34),
is<p
Be e , dzs e bl
. 1 g g ~
GO(X,O',X s0 ,D) = = (21T) J
VKZ + s2
—¢K2+szlx—x'| VKZ + s2 -8 —VK2+SZ(X+X')
e -+ e . (40)
VKZ + s2 + s

The first term of (40) is readily seen to reduce to the familiar Debye-
Hiickel result; the second, which damps out exponentially if either particle
moves more than a Debye length from the boundary, is a correction due to
the presence of the wall. Such a correction is not unexpected; the usual
interpretation of the pair correlation is G0 = - B¢eff? where ¢eff is
the effective "shielded" interaction between a pair of particles. But the
"shielding" is due to long-range interaction with other particles in the
system, and clearly cannot be spherically symmetric if the pair is near
the boundary (and thus most of the shielding particles are on one side).
We now return to (29), and write n(x,0) = n + nl(x,c) .
{ it
n

g

<< 1 (41)

and substitute (40), (41) into (29) to obtain



Bnl(x,c)
+ oKkn € T(kx)
where

j dx' sgn(x-x') nl(x‘,q')

is the single species plasma parameter,

() = Jdt

0

(42)
= Beg K (43)
2
-20Vt +1(/t2+1_t>
te ——— (44)

Vt2+l+t

and we have again evaluated some straightforward integrals. While an

exact analytic evaluation of the integral in (44) seems difficult, one

readily shows that

I())

_2}\ 1
e -%
5T {1 +0{(x7%)

—(%)(zm+y+z)+0(x) , A << 1

:l,}\»l . (45)

Aside from the exponential decay for large A , we note that o)

has a not unexpected singularity of the ofigin, related to the usual

short range divergence.
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Differentiating (42) with respect to x , one finds

2
2—5 nl(x,o) = 4w8e0ngp(x) + nGKz Es 1" (kx) (46)
39X

where

p(x) = Zeg n, (x,0) (47)

is the charge density. For the charge density, we find the equation

2
9 _ 2 _ 3 ., 3
(—-—2 K > p(x) = B> I'(kx) ) n e (48)
Eh:d
The solution of (48) which wvanishes at « is given by
-KX BKZZnoeg o -k | x=x"|
p(x) = Ae B e— f dx' e I'(kx") . (49)

[¢]

The constant A 1is determined by the requirement of overall neutrality4

f: dx p(x) = 0 which gives

A= (8c/2) ] ne’

*® 3t
J arron [2- e ] (50)
0
It is straightforward to reduce (49), (50) to the form
- 3
p(x) = BK(Z nceo) J (xx) (51)

where J()) has the alternate forms (useful for large and small A res-—

pectively)
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- A

J) e f dr' simh X' I(M') -~ [ dr' cosh(A-2") I(AY)
0 A

A o '
f dr' cosh(x-A') I(A'") —~cosh A f a e_A (") (52)
0 o

It is immediately apparent that J(\) is bounded for all » , despite
the short range divergence of I(}) . Also, from (44) and the asymptotic

forms (45), it is apparent that J(A) has the asymptotic forms

_ _ZA/X
J) = Cl e+ O(e > s A>> 1
=-C+0(x mA) , X <<1 (53)
where Cl ’ C2 are positive constants given by

]

= de'Sinh A' IO = fw dt t(V t2 + 1 - t)
° 0 (4t2+3) (Jtz +1+t )
o dt t(Vtz + 1 - t)

c, = f ae I(\') = f . (55)

0 ) (2¢t2+1 + 1)<¢t2+1 + t)

(@]
|

(54)

Thus, independent of the quantities e we find a charge
density which damps out exponentially. But, for the singly ionized case
(which was the only case for which we were able to conclude in Section II

that the charge density and field were zero as the plasma parameter

approached zero), we have that In e3 = eZZn e =20

, and thus, from
oo foalo}
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(51) (k= VBg.na,eg, is independent of ¢ ) p(x) =0 for all x

and (42) reduces to

3
- nl(x) = n_ ke T(xx) (56)
where nl(x) is the electron density perturbation (the ion densities
differ from the electron density by a trivial factor if there is more

than one species). Assuming nl(w) = (0 this integrates trivially to

nl(x) =-n ¢ f dx I()) (57?

KX
Again the integral is somewhat difficult, but one may show without dif-

ficulty that

=
e- KX
— [1 + 0(1/Kx)], cx >> 1

nl@O=—noaﬁ (58)
-;-[1 +0 |.<xzn.<x|] , kx| << 1

\.

There is no difficulty in adding an applied field to the cal-
culation, provided €field << €eh 3 indeed, if the parameters a of
(21) (measuring the applied field energy) and e of ( 43) (measuring
the mean interaction energy) are both small, the effects of correlations
and applied fields are superposable, and one may simply add the results

of Section II (expanded in powers of V. ) to the present result to obtain
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ne(x) = no[l + 2/a exp"KX + a expn2Kx

= 3
-¢ f dx I()) + 0(a /2) + 0(52) + 0(/‘&6)] . (59)

KX

In this limit, there is also no difficulty in treating the plasma capa-
citor; in fact, if L dis the plate spacing, and «L >> 1 , the only
significant effect on the pair correlation is to add a term exactly like
the second term of (40), with x + x' replaced by 2L-x-x' , representing

the sheath on the second boundary. In particular

ne(O)=no[l+2/o—c+oc——g—(l+0(?%)):] ) (60)

This is to be compared with (47) of Pinney.2 As previcusly noted, the
leading correction due to the applied field is in agreement; however,

the correlation contribution (term proportional to ¢ in (60) ) differs
in both sign and magnitude from Pinney. Concerning this discrepancy, we
note the following: (a) It seems intuitively obvious that the density
of particles near the wall should be less, not greater than the density
in the interior (this effect is charge independent, and is similar to

the boundary layer effect in ordinary gases). (b) Our method and results
are quite simple, and amenable to rather obvious physical ihterpretation;
we have not omitted (or needed) any extensive computational details,

(c) Only the most trivial modifications are necessary to generalize our

method to the slab problem. Clearly (36) is still valid, and the only
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modification of (35) is to replace the upper limit of the integral by L,

+/? + SZ]X —x'|

To (38) must be added terms proportional to exp and

2 2 '
exp K"+ 87(x + x) . The coefficients are determined straightforwardly

from the analogue of (35). Instead of nl(w) = 0 , one requires that the

overall charge density be zero. This leads (for the singly ionized case) to

ne [ e[ (Zrr- /v )]

n, (x) = - —2

1 2 v
/2 E__(v/t2+l—t)e—2/t2+l|<£]
(1/t2+l+t) -

¢t2 + 1 k(L - x)

+ exp_2

{ 2/ 1 ex
exp

/2
_ ______L____ {l _ exp-—Z t + 1 KL] } (61)
Vtz + 1 «L

In obtaining (61), we have made no approximation and have evaluated
exactly nine very straightforward integrals (nothing worse than
fidk" exp[alx—x"l] exp[b]x" - x'! sgn(x-x"') ). It is evident that
(61) may be expressed in terms of I()) of (44) as

nl(x) = —-n € [I dr I()) + J dx 1)
° KX K (L-x%)

+ 0 (—i—i) + O(exp_ZKL)] (62)
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(d) As to the sign of the density correction, no computation is neces-
sary. For the singly ionized case, the first term of (29) is zero in a
linear approximation. For the second term, we note that Go is (positive
quantity) x (—ecec,) , and 98/3x (1/¢(x—x')2 + pz)’xﬁo >0 . It follows
that, at least in a linear approximation, 3n/8x‘x+0'> 0 , so that the
density of each species increases as one moves away from the boundary
(this conclusion is independent of whether the upper limit in (29) is =
or L) .

Thus we believe that our results for the "correlation boundary

layer" are correct and Pinney's are in error.

1V. NON-EQUILIBRIUM THEORY

In the preceding two sections we have studied the following:
(A) The response of the equilibrium plasma to a static field applied
at the boundary, and (B) The formation of a boundary layer in a field-
free equilibrium plasma, due to correlation effects. In the present sec-—
tion we will study the response of a plasma to an oscillating applied
field, with pair correlations taken into account. The field at the boundary
will be assumed to have the form Eo e—iwt , and we will seek the steady
state response, when all quantities are assumed to oscillate with the
same frequency w . Further, we will linearize about the previously
determined field-free equilibrium. As usual, we will assume that the one

particle distribution function is independent of the components of the

position vector parallel to the boundary. Writing
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£

£
o

F1=f +fl,g=go+gl, ) (63)

one finds, to first order in the strength of the applied field, the

equations

e o
c ' ' 2 9 1 3
+mcfdn jdx fdp[3x< 5 2>3u
0 Yo + (x-x'")

+ 50 ( ) Bvl] gl(x,x s0sn,n") (64)
ny

v sz + (X-X')2

n Y] Y
Y]

. 9 3 3
{ i+ u=tu et (v - V) -&)-i\gl(x,n,p,x',n'

bee /1 Nia o 1 8N, , 1
o o'l dx /—————2—-—2' m0 du mg, 3u'! p (/—————ﬁ>
(x-x")"+p v Y (x-x") THp

' (?ﬁ" 33, - ml, )] [fo(fﬂ £,(x",n") + £ (x,n) fo(n')]
- o' vy
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] 1 9 ) 1 )
[BX ( . 2) ™ + ap' ( 5 2) . BV,} fl(x,n)
/(X-X' ] ) +p ] " /(X_xl t ) +p' -’\,_
9 ’ 1 9 9 9
+ g, (x"',x",0=p" 0" ) | —+ L .
» 1 N X 5 ou ap /——2————-————2 ovy
V(x=x"")"+p'2 v " TR (x-x"T)

p > =
4" n
p' > = p'
s v
n < n'

Here u , u' are the velocity components in the

have used the shorthand
- ¥ ® 1 2!
n:(u’v_l_’o‘)s Jdn =z eO,Idudel

O.T

etc.

(65)

x direction, and we

) (66)

We assume that particles striking the boundary are specularly

reflected. This implies a condition on fl , 1.e.
£,(x = 0,u,vy,0) = £,(0, =u,vy,0)
4] 4"
Defining
2 1St
G (x,x",n,m',8) = J dp e g (xx',
n

(67)

p,nsn‘) ’ (68)

4
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and using our previous expression for g, » one may cast (64), (65)

in the forms

[- iw + u g;]fl = J(x,n) (69)

[" iw + H(u,n,S) + H-(U-' ,T\' ’ "S)] Gl(xax',n,ﬂ')

n v

= q(x,x',n,n") (70)
where
€y 3
J(x,m = - Er‘E(X)'SE fo
g
e o s|x-x"] 5
- ' 4 V) =
S j dn j dx J_d s e {%gn(x x') 5
)
is
L2 '
s BVL]Gl(X’n’X sn') ’ (71D
n
the operator H on any function F is given by

) .
H(x,n,s) F(x,n) = (u 5=t 1s'vl)F(x,n)
ny LAV

21re0
+

fad _ SR
— J dn"! [ dx'' e S!X X l F(X",n")
s

is .
[sgn(x-x'w - —53—] £, (72)
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and

- —r’
2we0e0,e slx x i
q(x,n,x',n") = - Y
o}
sgn(x-x' L—-]i--—-?—- [ff + f_f
7 du s vy o1l 170
n
2
ZﬂBeUeO,E(x) 5
+ ™ fo(n) fo(n')
mgVKz + 52

[;—sz + szlx—x'l + ¢K2+sz—s o K2+SZ(X+X';1
VK2+SZ+S

2
2 © 2, 2
N (2m)"Be_e . J e J et f dx"e_slx_xu.l[?_/k +s2|x"-x""
(o]

+__-..——-——.--

(sz+sz—s e—VK2+Sz(X'+X")}[- ) ig
VK2+sz+s

. (73)

s > -8

So far everything is defined only for the region x > 0 to
which the plasma is confined by the perfectly reflecting boundary. Our

method of solution will consist of extending the range of definition of

fl , G1 to x < 0 in such a way that Fourier transform methods may
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conveniently be applied. Now the obvious symmetry property for fl s con-

sistent with the reflection condition (66) is
£,(= x,u) = £, (x, -u) . (74)

However, if fl possesses the property (74), the left side of (69) will
be invariant under the transformation (E i : z) whereas the right side

(given (71)) is not, even if E(~-x) = — E(x) . Therefore, it is convenient

A ~e ~
to define a new set of functions f1 s G, E which reduce to fl » G,

E for =x,x' > 0, have the symmetry properties

~ o
fl(—x,u) = fl(x, -u) s (75)
A~ ~
Gl(—x,u,x',u') = Gl(x,—u, x',u') s (76)
El(x,u,-x',u') = Ei(x,u,x‘,—u') s a7
~ ns
E(-x) = - E(x) N (78)
and satisfy the equations
A% -5
(o + 0 Z)F Gm) = Tam (79)
(—iw + H(x,n,s) 4-?f(x',n',—s)> Cl(x,n,X',n') = q(x,n,x',n") (80)
n n . )

where
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A e (n
J(x,n) = - EE {F(x) %ﬁ £,(n)
o
___.__l 1 ” 1 2 -8 le - ]X" , 3
T 20 f dn f dx J d°s e [sgn(x)sgn(!xl - |x ])E
i'%' 3 ~ ' '
s _5}_7:._.] G, (x,n,%' ;0 )} (81)
H(x,n,s) Flx,m) = {u %; + is*vL] F(x,n)
v Ny
vy (L, s|lxl - x|
+—2Jdnnj’ dx'' e F(X”,n”)
m
o -0
8
[Sgn(x)sgn”xl - =gy -5 "a%_"} £ (82)
Y

(nee, [ -s|lxl - =]
.E(xsnsx' ,n') = — T S e

m
g

i
\}gn(x)sgndx] - |z E—-j'—-—a—-] [fof + f fo]

Ju s vy
&P E o) 3 ~Ae* + &P x| - ]X'll
t——— o £ () £ (n")]|e
2, 2 ° ©

kK + g8 -

VK2 + sz + s

72\ Ix'lJ
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. Rl
+———-——-——-—j dn''f (n"")f_(n") de” e
5 5 o ) L
k" + s -
/é2+82_2 -¢K2+s2 (]x'l + IX"l) -8 !Xi - ]X"l 3
R e %gﬂmsgﬂhd%x”l)ga
AP rs2ts '
ig 5 x <> x'
- — "——*] f.(x,n)p + {n 0 (83)
8 9V, 1
oL s >-s
- o

Clearly Eqs. (79) - (83) reduce to (69) - (73) for x > 0 , and, given

the symmetry relations (75) - (78), (79) is invariant under the transfor-
mation (x> - x, u~-> - u) , while (80) is.invariant under both (x » - x,
u~>-u) , (x'>-x",u'»~-u") .

While non of the equations (79) - (83) are convolutions, they are
still fairly easy to handle by Fourier transform methods. Before proceeding
with the transformation of these equations, we somewhat belatedly note the
boundary condition relating the current and the field. From the Maxwell

equation

0 =

VxH= [lmj (x) - iw _E_I(X)] s

N

one finds

vV e [j(x) —-%Q E(x)] = 0
o

T

or, if j and E{ are only in the x direction and depend only on x ,

i~
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. _ iwE - _ dw
j =3 = const. i Eo . (84)
Here
jx) = J dn u £,(x,n) (85)

is the current density (note: j(o) = 0) . Now if ?(x) is defined by

a relation similar to (85) with £, replaced by f, it is clear that

1 1
o~ N "
j(=x) = = j(x) . Similarly [if (78)] E(x) is odd, the relation

for the modified quantities corresponding to (84) is

r~ idg(x) _ imEosgn(x)
jG) - 4w 4 (86?

Now we define (note that f1 etc. are defined for all x )

~ o —-ikx .,
flk(n) = f dx e fl(x,n) (87)
o - -i(kx + k'x")
ﬁ;lkkxn,n') = f dx J dx' G, (x,n,x",n")e (88)
A oo -ikx |
Jk = f dx e J (x,n) (89)
0 oo » ‘o
Ty g (on") = f dx j dx' Gx,n,x" 0" g X + kI (90)
L]

I = f dx e ’}(X) (91
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~ o ~ikx o
E, = J dx e E(x) (92)

Now the formal solution of (79) with (87), (89) is trivial, taking the

form

rJ

“ i Jk(ﬂ)

S ULl ey ¢
Similarly, from (86), (91), (92), one finds

n ~s

e = g (R 2 ()]

s
u J, (n)
= -1 J dn T T— (94)

where we have used (93) and the analog of (85).

The transform of (80) may be written in the form
-+ E (e +H, (' -0)] G, =% (95)
L S KT8 ] 1kk' kK’

where on any function

7~
Hk(n,S) F(n,k,s) = iK-*v F(n,k,s)
n, n

AV v

Ziec 9 © d 1 ]
(R LN [anr|e | = e e
T
" (k. + s87)

— 0

Y Y]

- ﬂ(F(n",k,S) + F(n",-k,S)i] (96)
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and we have used the shorthand

K = (k, s) 97)
N

v

Clearly a formal solution of (96) may be written in the form

~ ‘ = iwt —T[Hk(n,s) + Hk'(n',-s)]
Gyt (Ma0') = dt e e v v
0
a%kl(n’niys) (98)
n

Now the formal solution may be made more explicit by utilizing

ns
the properties of the H, operators in a manner similar to that utilized

k
in a now famous paper by Dupree.5 Let f(n,k,s) be any function, and
n
define
=T Hk(nas)
F(n,k,s,t) = e f(n,k,s) (99)
n gV
Then ¥ satisfies
5F _
Py + Hk F = 0 (100)
F(n,k,s,0) = £(n,k,s) (101)
N 4"

But, if F(n,k,g) is an even function of k , (100) with (96) is just
the linearized, field-free, Vlasov—Poisson equation in a half-space,6

and can be solved by standard means. Since the procedures are well known
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we simply state the results. Defining

00 iwlr
F(n,k,s,wl) = f dt e F(n,k,s,T) , (102

V) Y]
[o]

one has

-4 D(n,K) dn"f(n”,}f’)
FOLR) = Ty =y (PR + 8w K) f ®v'T - w)
v

4%

VIRV VL)
s dkll dn”f(n"’}é”)
z,n.e(wl,s) f (KIV)ZA( K") [K"'V" - wl (103)
N wl’ o n

where

)
4re (5'. SG)fo(n)

D(n,K) = —2 > . (104)
N m_K
o}
dn D(n,K)
A(wl,K) =1 - J W (105)
LAVILY)
is the ordinary plasma dispersion function, and
- s_ | dk' 1 _
e(wy,8) = 1+ 57 J w12 (A(ml,K') l)
. 1
K' A(wl,K') (106)

(here KXK' = (k',s) etc.) has previously been identified6 as the dis-
Y Y
persion relation for longitudinal plasma surface waves. Inasmuch as the

operators exp[—THk(n,s)] . exp[—THk,(n',-s)] commute, one may readily
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~ no
compute the explicit relation between lek' and Qg [eq.(98)].
Before giving the detailed results, however, we will make two further
approximations: (A) as shown in the preceding section, we may write
fo(n,x) = féo)(n) + fél)(n,x) s Where fél) vanishes except in a sheath

near the boundary, and 1is proportional to the plasma parameter.Since the
correlation is already proportional to the plasma parameter, we replace
fO by f( 0) in the correlation term. (B) We assume that the frequency

w is much greater than the collision frequency, so that we may write

(l)

= 50 | £ F1k
1k(”) et R o NOIN L (107

1k

where
M( ) i Eéo) ie0 EL gu (o)( )
k" " mm-e m , (108)
o} ku - w

and replace flk by fii) in the correlation terms. This is called the
reactive approximation by Oberman,Ron and Dawson,7 for reasons which should

be apparent. Transforming Eqs.(81), (83), using the approximations (A),(B)

above, and Eqs. (99), (102), (103), one finds

m k du o 2 k' du o Sk=k!

2 00 00 ~ ,
+ [ d”s J dn' J dkl J dk2 Kl(k(klkz) lelkz(n,n )}- s (109)

[e ] — 00

1 1 ~ 1 —— ® © i ]
J dn lelkz(n,n ) = j dk3 J dk4 f dn

~ e (. _

-—C0 =00

[Kz(klkz,nn'|k3k4) EkBka(n,n')
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+ f dn' 'Ky (k ky,m5n’ |k LITLN ") qk3k4( ,n')] (110)
and
qkk(nn) rdk'K(kk non' [k E (111)
3740 43737400 k'
~ ¢ -ikx
Here (l)( ) = f(o)(n) f(h(e nl(]xl) ’ (112)

00

with n, given (for the singly ionized case) by (57), (44). After doing
a number of straightforward, if tedious integrals, one finds for the ker-

nels Kj the expressions (note Kl is an operator)

i
K (klk k) =+ Zﬂ[ﬁ(k + k, - k)
1 172 (2ﬂ)3(52 + kg){j 2 1
2s 9 )
+ 8k, - k -—k)]-— ((k—k)———s °—> (113)
17 %2 2z, (kl_k)z} 175 3T L Ty
S(k~k,) (o .
Ky legkyn 0 fiegk,) = —5— I "
hn (klu + sev, - w' - io0)
/ n, oy
3 ( 1 > 6(k4—k2) . (A(m—m ,fk +s ) - l)
Ao’ , @§+SZ) (k u'—i'zi—w+w'—io) 27me (w-w',8)
* —— (114)

(k2+52) A(w—w',/& +s )(k u'- sevi-wtw'-io)
N
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0O

dw' D(n’ kl) ,%)

A(w—w',V£§+32)A(w',V£i+sz)(klu+s-vl-w'—io)
Ny

' 1
v Ty
KyCkgkyon ' [kgkyon'™) = oo

8

6(k -k ) G(k -k )

L(k u'-s vy —wtw' —1o)(k1u"+s vi'-w'-io0)
n oy oy

sG(k -k ) (A(w—m', +s ) // (2m)

+
(k4 T-sevi-wtw'-io0) e (w-w' ,s)(k +s )A(w ) ,Vk +s )(k u''+sev;'-w'-1i0)
NN Ny '
36(k -k )
(Zﬁ)e(m',s)(k§+sz)A(w ,/k2+s )(kzu —s-vi—m+w'—io)(k3u"+s-vi'—m'—io)
LAVIRAV) LAV VY
SZ(A(w—w',¢£§+s2) - l)
(Zﬁ)ze(w',s)e(m—mf,s)(k§+sz)(ki+32)A(w',/ﬂ§+52) A(w-w',’%i+32)
< 1 (115)
(k3u"+s-v"—w'—io)(k4u'—3°vl—m+m'—io)
n oy LAVERA Y
and
2e0e0,
7 ? - Tl
Ka(k3k4,n n'lk') = ey 218 (k' ~kqy=k, )

(0) [ ] (0)
e f (n") (n)
[*1e) 1y O . ) du o
((kS_k ) 5u T S )(k'u - w >

T 2.2, 2 ov
(k +k4+s )mb o~ ml
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(0) ]
Be, £ (n") Bféo)(n)

(Trendy

(o) v
e ,\of (n")/du

(aZ+s?) (k'u'- W) o W

1 (0) ,_, (o)
2n8(k +k4-k3) f0 ") [ige‘ Bfo (n)
g

2,2 2

(k4+s + ¥) o

e

(o)
of 0
0k 4 s - 2 )0 () /o
m \ 3 du v, ) k'u - w
o v

2me 5(k'+k34k4) (Bféo)(n')/'éu')

i 8 ® —
mc,(k%+sz)(k'u’ - w) 30w

(0) ( s
ngo_ foo (T\ )[ 1 _ K2+SZ . S)
2,2 2 2,2
m_(kj+s ") | (kymk') s (/K2+Sz+s) ((k ey 222 )

3
(o)
of (n)/3u
1y O ,_9 o
[(kB—k ) Bu + i 8v_,}|j ku - w :]
"

463¢K2+s2 e, (Bféo) (n) /3 u)féo) (n") }
(k2+s2+K2 ) ((kB—k' )2+32+K2)(1/K2+32+s)

4

(k3 Fae k4 y 8 2>=-8, n*> n") . (116)

N v
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Substitution of (109) - (116) into (94) yields an integral

equation for E@ of the form

%k[l - Kk - Nk] = - 24E_ P(%) + rdk'm(k,k') Ek. (116)

=0

Here

(o) 2
e u Bfo (n)/3u _ 4m z o, & du u Fé(U) (117)
m_ (ku - w) w m ku = w
o} o o

e
1
elg
Ny
g

is

[0

generalization of Landau's Kk to multicomponent plasmas.
The correlation contributions Nk , M(k,k') are known, but it is
clear from (109) - (116) that they are quite complicated in general
(especially M ) . However, certain properties may be deduced from
(94), (109) - (116) without writing the explicit forms for N , M . We
note the following: (a) Nk is an even function of k (as is Kk )
(b) Comparison with the infinite plasma case shows that Kk + N is
simply related to the conductivity one would calculate by transforming

the infinite space Vlasov equation (assuming f E depend only on

1 9
the particular direction =x ) and using the reactive approximation to
obtain a linear relation between the transformed current density and

field. In fact

i o

K, + N =-T2% o (118)

where the superscript « refers to the infinite space conductivity as

described above. The limiting case 0: has been studied in considerable
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detail by Oberman, Ron and Dawson,7 and some progress has been made
on the k # 0 case.8’9 Eq. (118) forms a useful bridge between the
infinite and semi—infinite problems. (c) Some simple manipulations of the
dummy variables n, n', n'' show that N0 vanishes for the one-component
case (electron gas in a positive background), corresponding to the well
known fact that the electron-electron contribution to 0: (and the related
correlation damping) is O(kz) whereas the electron-ion contribution is
finite as k + 0 .

Turning now to the integral term, which clearly represents the effects
of the perfectly reflecting boundary, we note the following: (o) M(k,k')
has no singularities for any k or k' . (8) The integral I(k) = [ a?
M(k,k') Ek‘ is an odd function of k , and yanishes as k>0 . (y) 1If
Ek' has no singularities worse than P(1/k') , I(k) is well defined for
all k . Furthermore, if Ek' = y(k") P(1/k') , where (k') and all its
derivatives are absolutely integrable in any finite interval including the
origin and behave no worse than k'2 as k' >~ , I(k) and all its deri-
vatives exist and are absolutely integrable on (-~»,x) ,
From property (o) above, together with standard Fourier analysis,10

it is clear that the integral term does not contribute to the limiting value

of the field at large distances from the plate. In fact

oo iE o0 ikx E
R | ikx 0 dk exp o
E(x) = 1lim % J dk exp E, = lim Pf = (119)
o 27 k1) KIIEANT T IR N
Eq.(119) has the form
Eo
E() = 7 (120)

(o}
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where D0 is the total effective dielectric constant, including cor-

relation contributions. From (118) and Ref. 7 [Eqs. (58), (59), (57), (37)]

one has that

)
22,2 dk k £ " (w/k)
N = <:_?._£Lg_t<_.> To s v [1 + o(—ﬁ-)] (121)
° 3mm w 5 (k™+<™) Ao(w,k)

Here ko v (G/ez) is an arbitrary cutoff which is necessitated by the
usual short range divergence, and Ao is the infinite ion mass limit
of Eq. (105). Inasmuch as the cutoff procedure is known to give only the

"dominant" i.e. logarithmic terms correctly, we may use the limiting forms

of f§+) » A for large k in the integrand of (121), i.e.
£ (w/k) > 11 £ (0) = mi Vi )
o (o LENE 3 LESR Ty
\ (122)
Ao + 1, (w/k) << v0/m
o
to obtain
iw3 € -1 1
N =~ —2<mn (g ) 1+ O(ﬁ') + o(——-——_—i—> (123)
T B zn(e )

where e 1s the electron plasma parameter [cf.Eq. (43)]. Since € 1is small

by assumption, the correlation contribution Lo will be negligible unless

2

]
1-Ko=1-—121 (124)

w
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is also small, specifically

w - w -1
£ € in e . (125)

In particular, as w ~> wp , one has

3
E(w) > - LT By s v u (126)

wp £ ln(e—l) °

so that the field at « 1is 90° out of phase and much larger than the
applied field in this limit. This is, of course, the expected plasma
resonance, which could have been predicted qualitatively by replacing
@ by ®+ iv in the collisionless result. From (126) it is clear that

the effective collision frequency is given by

w_ € in e-l
v = 2 (127)
6v/1
As for the way in which the field approaches the limiting value

(119), one may make the following remarks: (1) Succeésive approximation
methods, together with property (y) above and standard Fourier transform
theory10 show that the contribution of the integral term vanishes faster
than any inverse power of x for large x . Little more can be said
about the integral term without calculating M(k,k') in more detail.
This calculation is quite complicated, and will be deferred for future work.
We might add that a superficial study of Eqs. (109) -~ (116) should convince
the reader that the notation is appropr£ate (M is for "monster'!) (2) If the

integral term is neglected, one finds
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i&E J dk expikx

Ex) » B (x) = - —2 p . (128)
k(L - K - L]

™
An analysis similar to Landau's shows that we may write
(o) _
EVY = E(x) + E (%) + E,(x) (129)

where El(x) behaves as

2/3
ex - (kx)
——IL—————Z7; for large x
(kx)

and differs only slightly from Landau's asymptotic result, whereas E2

decays exponentially on a length scale given by

w vY0/m
2 = 2 . (130)

mz/ll—K—-N |
o O

In particular, £ attains its maximum value at resonance (w ~ mp)

2
L = A - , (131)
max D 1/3/? € n € 1

where
-AD = k (132)
is the total Debye length. Thus, at resonance, the field approaches its

limiting value on a length scale which is approximately the geometric

mean of the Debye length and effective mean free path.
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Finally we consider the implications of our results
for the more realistic problem of the plasma capacitor. If the

plate spacing of the capacitor is d and (2/d) << 1 , where & is

given by (130), the two problems are simply related. If the potential

between the plates is V , then

d
V=+ f dx E(x) = + dE(=) {1 + 0(—%)] (133)

¢}

where E(») 1is given by (126) plus corrections of order (Kd)_l . If
the plates are perfectly reflecting, there is no particle current across

them, so that the current is just the displacement current at the plates, i.e.

I =- dipA Eo/lnr R (134)

where A 1is the plate area. Thus the impedance is given by

7 =(v/1) & 4mdEC() 4

(135)
-iwA E0 wCoDo

where we have used (120) and C0 is the capacitance of the empty capacitor.

In view of (118), Eq. (135) may be written as

7 = 1

= (136)
co[énco - iw]
which relates the plasma capacitor impedance to the infinite space conduc~

tivity as calculated by Oberman, Ron and Dawson.7 In view of (123), (124),

we can also relate the result of (136) to the equivalent parallel resonant

circuit shown in Figure 1. A more detailed study of the finite capacitor,
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such as has been carried out in the Vlasov limit by Hallll, and Shure12

b
shows that, in general, the equivalent circuit is more complicated, and
the resonance is multiple. However, if «d is sufficiently large, the

secondary peaks cannot be distinguished, and Fig. 1 gives a good des-

cription of the response to an applied potential.

V. DISCUSSION

We have shown how "Coulomb collisions" may rigorously be taken
into account for the system of a fully ionized plasma confined to a half-
space by a perfectly reflecting boundary. The only previous attempts to
' introduce "collisions" into finite or semi-infinite geometry, non-equilibrium

theory have used the relaxation m.odelll’l3

. We have seen that, while a
rather formidable amount of mathematics is involved, the problem of treating
correlations rigorously is not too intractable.

We will briefly discuss the limitations of the present work.
These may be listed as follows: (1) The non-equilibrium theory is linear,
and so ig limited to small perturbing fields. (2) The non-equilibrium
theory is limited to high frequency (compared to the effective collision
frequency) perturbafion. Otherwise,we would have to solve coupled integral
equations for fl and E . (3) The details of the non-equilibrium sheath
depend on the solution of an integral equation with a known, but compli-
cated kernel. However, the limiting value of the field at large distances
from the boundary was shown to be simply related to the infinite space

conductivity as calculated by Oberman, Ron,and Dawson. While the detailed

study of the integral term is reserved for future work,it appears from
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the way in which many of the terms arise that their effect may be limited
to a region of a few Debye lengths near the boundary. (4) The limitations
of the model have been discussed previouslyé. Generalization to more
realistic geometries, especially slab geometry appears to present no
great difficulties, but the feasibility of treating more realistic

boundary conditions remains an open question.
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